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Abstract

Living/controlled radical polymerization of methyl methacrylate (MMA) was investigated using a new initiating system, i.e. DCDPS/
FeCk/PPh, in which diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS) is a hexa-substituted ethane thermal iniferter. The polymerization
mechanism belongs to a reverse ATRP process. The polymerization was closely controlled in bulk and in solution at quite low temperature
such as 75 or 6C. The molecular weights of so-obtained PMMA were high and polydispersities were quite rityoh,, = 1.20-1.31).

End group analysis result usiril NMR spectroscopy shows that the polymer obtainao-fanctionalized by a chlorine atom. With the Cl

atom at the chain end, PMMA obtained could be used as macroinitiator to proceed chain-extension reaction with MMA and block
copolymerization reaction with styrene in the presence of CuCl/bipy catalyst via a conventional ATRP peo2@e886.Elsevier Science

Ltd. All rights reserved.

Keywords Living/controlled radical polymerization; Reverse atom transfer radical polymerization; Diethyl 2,3-dicyano-2,3-diphenylsuccing®é&/keCl

1. Introduction crylate (MMA) [9,10], methyl acrylate (MA) [11], acrylo-
nitrile [12], andn-butyl acrylate [13] etc. were successfully
It is well known that radical polymerization plays a polymerized by this method and it exhibits some character-
significant role in the industrial process. But due to its irre- istics ofliving polymerization. ATRP has also been success-
versible bimolecule termination, it is very difficult to fully used to prepare functional polymers, such as block,
proceed in diving/controlled manner [1]. The concept of graft copolymers etc. [6,14—-16].
living radical polymerization with iniferter was first intro- Theliving/controlled radical polymerization of MMA has
duced by Ostu in 1982 [2], since then many researchersbeen widely investigated using ATRP method, among them
around world have devoted their efforts into this field. In a large variety of transition metal compounds were used as
1993, Georges et al. [3,4] reported on théng nitroxide- catalyst: Cu(l) [10,17-20]; Ru(ll) [5,21,22]; Ni(l) [23];
mediated stable free radical polymerization (SFRP) of Rh(Il) [24]; and Fe(ll) [9,25]-based systems. It has been
styrene. Later Sawamoto et al. [5] and Matyjaszewski et reported that the PMMA with well-controlled molecular
al. [6] reported a novel polymerizable method that is weights and narrow molecular weight distributions could
based on the transition metal catalyzed atom transfer radicalbe obtained with iron-based catalyst systems that is RX/
addition (ATRA, an efficient way for carbon—carbon bond FeCL/PPh [25], RX/FeBr/dNbipy (4,4-bis(5-nonyl)-2,2-
formation in organic synthesis). Matyjaszewski named the bipyridine) or N(nBuj} [9].
process as atom transfer radical polymerization (ATRP). Though the above-mentioned conventional ATRP
In ATRP, alkyl halide species, RX, were used as initiators method is an efficient way to maintaiiving/controlled
and transition metal compounds at lower oxidation state, radical polymerization of various vinyl monomers, it has
such as Cu(l), Fe(ll), Ru(ll), or Ni(ll), complexed with two major problems: the toxicity of the halide species RX
suitable ligands, M/LX, as catalysts. Various types of and the oxidation of the catalyst,MLX, by the oxygen in
monomers such as styrene (St) [1,6—9], methyl metha- air [26]. To overcome the drawbacks, the “reverse” and
“alternative” ATRP was recently promoted by Matyjas-
P . L zewski et al. [27,28] and Teyssit al. [26], respectively.
17c)({:gtljrrespondmg author. Tel.+ 86-10-6275-4187; fax+ 86-10-6275- Wang and Matyjaszewski [27] reported theng/controlled
E-mail addresskygiu@chemms.chem.pku.edu.cn (K.-Y. Qiu). radical polymerization of styrene via a reverse ATRP under
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100000 20 goal, we employed a carbon—carbon bond thermal iniferter
py such as diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS),
80000 |-  (GFC) 118 into the reverse ATRP systehi,e. DCDPS/FeGIPPh, to
it M“(/% produce a new initiating system and a well-defined PMMA
T wor 118 with high molecular weight and a narrow polydispersity was
%, § obtained through this process. End group analysis showed
‘E: 40000 |- 144 that the PMMA obtained are-functionalized by a chlorine
S group, which is further confirmed by the extension and
20000 - . R S AL copolymerization of PMMA in the presence of CuCl/bipy
with fresh MMA and St, respectively, via a conventional
°% 2I0 4I0 . f;o alo 100 ° ATRP process.

Conversion (%)

2. Experimental
Fig. 1. Dependence of number-average molecular weight and molecular perimenta

weight distribution of PMMA on conversion at 5 in bulk polymerization
of MMA. Conditions: [MMA],=9.38 molI'"; [FeCl],=18.8x10°
mol 1% [PPh]o = 56.3x 10> mol | %, [DCDPS} = 4.69x 10 3 mol | %,

2.1. Materials

FeCk-6H,0 was dehydrated by the reactions with thionyl
. i ] chloride [29]. CuCl was purified by stirring in acetic acid,
heterogeneous conditions employing AIBN/Cy/Bipy as filtered and washed with ethanol and dried.’ Bgyridine

initiating system, but it is unpontrolled for .both MMA 'ar.1d (bipy) was recrystallized from acetone. Methyl methacry-
MA. Shortly thereafter, by using alkyl substituted bipyridine late was dried over CaHand distilled under vacuum.

Iiganq such as dNbipy as a ligand instead of bipy, Xia and Triphenylphosphine was recrystallized from ethanol to
Matyjaszewski [28] described the reverse ATRP under ,;ninate triphenylphosphine oxide [26]. DCDPS was

homogeneous condition, in whidkving/controlled poly- prepared according to the reported procedure [30,31].

merization of St, MMA, and MA were all successfully g\ ent and other reagents were purified by standard meth-
carried out. More recently, TeySsiet al. [26] reported ods

that the AIBN/FeCJPPh system could be used for the
synthesis of well-defined PMMA in bulk and solution
polymerization of MMA at 88C. The PMMA so-obtained
is a-functionalized by an isobutyronitrile group and The polymerization was carried out in a sealed tube
w-functionalized by a chlorine group. equipped with a three-way stopcock under vacuum. After
As mentioned above this type of ATRP approach the the reaction components were charged into a dry glass tube,
same type of equilibrium starting from conventional radical the tube was sealed under vacuum performed with the three-
initiators such as peroxides or diazo compounds. The effortspump-thaw cycles and immersed in an oil bath thermostated
to exploit a new kind of initiator for the reverse ATRP at desired temperature. At certain time intervals, the glass
system should be an interesting work, which can initiate tubes were taken out and broken. The resultant polymers
the polymerization at lower temperature and the so-obtainedwere dissolved in THF and precipitated in petroleum
polymer should have narrower polydispersities. To gain this ether, and then dried. The conversion of polymerization
was determined gravimetrically.

2.2. Polymerization

3.0 100
e 2.3. Measurements

. The number-average molecular weight.,f and molecu-
lar weight distribution or polydispersity inded(,/M,) of
the polymers were determined at’@5with Gel Permeation
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Fig. 2. Time dependence of In([M[M]) and conversion at 7% in
bulk polymerization of MMA. Conditions: [MMA] = 9.38 mol I'";
18.8 x 10 3mol ™% [PPh],
[DCDPS} = 4.69 x 10 ®mol I
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Chromatography (Waters Associates Model HPLC/GPC
515 liquid chromatography, equipped with a refractive
index detector, HT2- HT3 + HT4 p-Styragel columns
and calibrated with standard polystyrene), using THF as
eluent and a flow rate of 1.0 ml mih 'H NMR spectra
were taken at 2Z& with a Brucker ARX400 (400 MHz)
spectrometer with DMSOgdor CDCk and tetramethylsi-
lane (TMS) as solvent and internal reference, respectively.

! An interesting work in our lab about the living/controlled radical poly-
merization of styrene with DCDPS/FefRPh initiating system is to be
published inJ Polym Sci Part A Polym Chem
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remained quite narrow during the whole way of polymeri-
zation and decreased slightly in the range of 1.29-1.20.
While in a comparison experiment MMA was polymerized
with DCDPS alone in bulk polymerization (DCDPS/FgCl
PPhR/MMA = 1/0/0/2000, at 78), the conversion reached
16.9% after 1.5 h, the molecular weigiM{cpc) increased

up to 200,800 and the polydispersity is broaddr,/M,, =
1.72). From these results, we can see that during the same
conversion thévingpcyand MWD in the comparison experi-
ment are greatly higher than those produced by the ATRP
method. Thus, in this system, DCDPS acts as an initiator
rather than an iniferter. The logarithmic conversion data
In([M] o/[M]) plotted against timet as shown in Fig. 2,

Fig. 3. Dependence of number-average molecular weight and molecular gave a straight line passing through the origin, which

weight distribution of PMMA on conversion at %5 in toluene solution
polymerization of MMA. Conditions: [MMA} 6.25 mol I'%;
[FeCk]o 12.5 x 103mol ™% [PPh], 375 x 10°mol I
[DCDPS} = 3.13 x 10 *mol ™2

The glass transition temperatuig)was determined with a
TA DSC-2010 Differential Scanning Calorimeter at a heat-

ing rate of 16C min™".

3. Results and discussion
3.1. Living/controlled polymerization of MMA

Bulk polymerization of MMA initiated with DCDPS/
FeCk/PPh system was carried out at T ([MMA]/
[DCDPS}/[FeCk]y/[PPh]o = 2000/1/4/12), the results are
shown in Figs. 1 and 2. From Fig. 1, we can see that the
number-average molecular weightl,gpcy of PMMA
increases linearly with an increase of conversion from

shows the kinetics is first-order in monomer and concentra-
tions of the growing species keep constant during the poly-
merization. All these convincingly prove that thiging/
controlled radical polymerization of MMA was well carried
out in bulk at 78C with the DCDPS/FeGIPPHh initiating
system.

The solution polymerization of MMA with the initiating
system was carried out in toluene af@5As shown in Fig.
3, theMygpcyof PMMA increases linearly with the increase
of conversion and the polydispersity indices are narrow
(My/M,, < 1.31). The plot of In([M]¢/[M]) versus timet
(in Fig. 4) appears as a straight line not passing through
the origin which indicates that the kinetics is first-order in
monomer and the concentration of propagating radicals are
constant during the solution polymerization, but there is an
induction period. The reason might be that the lower
concentration of DCDPS caused the slower decomposition
of initiator and at the same time FeGlas highly excess
compared to the free radicals generated. So the polymeriza-

10,600 to 49,300, though less than the calculated valuest'on was inhibited. Comparing the kinetic plot of PMMA in

assuming that one molecule of DCDPS generates two living

polymer chains. The molecular weight distribution
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Fig. 4. Time dependence of In([M]M]) and conversion at 7& in toluene
solution polymerization of MMA. Conditions: [MMA] = 6.25 mol I'%;
[FeCk]o 12.5 x 103mol ™% [PPh], 375 x 10¥mol I}
[DCDPS} = 3.13 x 10 *mol ™2

bulk with that of the solution polymerization, it shows that
at the same experimental condition the bulk polymerization
is much faster than the solution polymerization. From the
slopes of the straight kinetic plots in Figs. 2 and 4, we
calculated the apparent propagation rate constékﬁf’g),
respectively. Then the stationary concentration of radicals,
[P], can be estimated from the ratio of the apparent rate
constantsiSPP, and the rate constants of radical propagation
ko available [7,32], i.e[P] = KiP"/k;. Kinetic data and esti-
mated concentrations of growing radicals in the polymeri-
zation of MMA using the DCDPS/FegPPh initiating
system are compiled in Table 1.

However, some deviation from the theoretical molecular
weight was observed with this DCDPS/Fg@ePHh initiating
system. The similar deviation results of MMA polymeriza-
tion were reported by Sawamoto et al. [5] and Teyssial.

[33] with CCl/RuChL(PPh),/MeAl(ODBP), and CClY
Ni(NCN')Br initiating systems, respectively.

PMMA can also be prepared at lower temperature such as
60°C and the first-order plot of the bulk polymerization of
MMA at such low temperature is shown in Fig. 5. Then the
same calculation was done and the concentration of growing
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Table 1 35000 20
Kinetic data and estimated concentrations of growing radicals for bulk \\.
(conditions: [MMA},=9.38 mol I'}; [FeCk]o=18.8x 10 >mol I %; S = M
[PPh]o= 56.3x 102 mol I"%; [DCDPS} = 4.69x 10~ mol I3 and solu- A o | 17
tion (conditions in toluene: [MMA]= 6.25 mol I'%; [FeCk], = 12.5x 103 30000 N .
mol ™%, [PPh]o=37.5x 103 mol I%; [DCDPS},=3.13x 10 *mol I} E S 118
polymerization of MMA with DCDPS/FeGIPPh initiating system Y \\ E 3

_ % 2

Bulk Solution =2 25000 . \\\
----------- 7PN

Temperature°C) 75 75 e e
[M] o (mol 174 9.38 6.25 I
kPP (10°s7™) 5.18 1.62 "
Ky (10 %Imol*s™ 1.08 1.08 200002 0 25 30 3s 40 45 50
[P (10° mol I7%) 4.78 1.49 Concentration of DCDPS (mmoliL)

a
Values extrapolated from 60 to 90; see Ref. [32]. Fig. 6. Dependence of molecular weights and molecular weight distribu-

tions of PMMA (in bulk) on various concentrations of DCDPS, [MMA]
[DCDPS}, = 4000/1; 3000/1; 2000/1; and 1000/1, respectively; DCDPS/

species in this system was found to heax 10 ¢mol 1. FeCyPPh = 1/4/12.
At 15°C lower compared to 7&, the concentration of
growing radicals decreased by about four times. then the activated monomer radicals react with FegBeh

In order to gain better understanding of the reverse ATRP by abstracting the chlorine atom to generate an organic
mechanism, we have studied the effect of various concen-chloride and a lower oxidation state metal complex
trations of initiator on the level of the control of polymer- Fe(PPR),Cl,. The so-formed organic chloride can reversi-
ization. As seen from Fig. 6, the molecular weight decreasesbly react with Fe(PP§),Cl, to regenerate radicals which can
with the increase in DCDPS concentrations at the samethen react with the monomer to create propagating chains or
experimental conditions, while the polydispersity indices directly to react with the catalyst to form the reduced species
are essentially the same. Thus, in this system there appear§e’” and the dormant species. Later, the polymer propa-
to be no significant effect of [DCDPgSpn polydispersity gates via a conventional ATRP process (Scheme 1).
indices. Indeed, even at a very low concentration of the initia-
tor ([(MMA] /[DCDPS} = 4000/1), the polymerization of

/ ! 3.3. End group analysis and block copolymerization
MMA occurs well and over a wide range concentration of

DCDPS, [MMA]y/[DCDPS} changing from 1000 to 4000, End group analysis of the resultant PMMA was carried

the polydispersity remained quite loiM,,/M,, = 1.20). out by '"H NMR spectroscopy, as shown in Fig. 7. The
o ) methyl protons (d) of the terminal methyl ester unit were

3.2. Polymerization mechanism seen at 3.71 ppm, which departed from other methyl protons

d(c) of the repeated methyl esters (3.56 ppm), because it was
affected by am-chlorine atom in the PMMA chain end. The
protons (g) of the phenyl group that derived from DCDPS
were seen at 7.78 ppm. Both of these results indicate that the
end functionalized PMMA with anx-(carbethoxy-cyano-

The polymerization mechanism is proposed as depicte
in Scheme 1. In the initiation step, it consists of the homo-
lytic decomposition of DCDPS initiator to form the primary
radicals (R and the addition of Rradicals with monomer,

08 100 phenyl)-methyl group from DCDPS fragments and @&n
chlorine group from catalyst was obtained by this initiating
. ‘gémor’[s’:glg " e system. The molecular weight determined from the NMR
o8- o spectrum(Mynur) = 2600 is calculated from the peak
§ . {e0 8 intensity ratios between the methyl groups in main-chain
SN . y s repeated units (a) and the functional end groups (g).
g leo g However, it is not close to that obtained from GPC
s =7 x 3 (Mnepo =~ 4000. This might be because thil,gpc) of
= o2t x 1% S PMMA was obtained from polystyrene standard and they
. X do not match well with théVl,wr)-
oo L . ) N A To investigate thdiving nature of the polymerization, the
o 4 8 12 16 20 2 2 chain extension polymerization of MMA was carried out in
Time (h) toluene at 108C with a PMMA with M, = 10,800 and
Fig. 5. Time dependence of In([MIM]) and conversion at 6@ in bulk MW/M” =13l I.n the presence of CuCI/blpy as catalyst
polymerization of MMA. Conditions: [MMA} = 9.38 molI'}; via the conventional ATRP. Thel, of the resyltmg PMMA
[FeCHo = 18.8 x 10%mol ™% [PPhl, = 56.3 x 10 °mol I ™% increases up to 130,600 and polydispersity index slightly

[DCDPS}, = 4.69x 10~ mol |72, decreases to 1.09, which can be essentially demonstrated by
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Initiation:
HsC0C —C — C —COC2Hs  _ & (?
I | ' Il ~ 2 H5C2O‘C— . (R+)
o
CN CON O bk
R- + Fe(PPhy),Cl, =—= R—CI +  Fe(PPhy,),Cl,
kll+ MMA T.{..MMA
CH
| 3 ICHS
R—CH; C- + Fe(PPh;),Cl; ——~  R_CH,—C—Cl + Fe(PPhy),Cl,
COOCH, COOCHy
Propagation:
CH, CH, CH CH CH CH
I [3 P 3 N [3
R—CHZ—(ID-——(—- CHZ—C':-)HCHz—C—Cl R— CHZ—?—(— CH-C Y7 CH-C -
COOCH, COOCH,; COOCH, \oq COOCHs  COOCH, ICOOCH3
P
s + +MMA +
Fe(PPh,),Cl, Fe(PPh,),Cl,
Scheme 1.

the GPC curves shown in Fig. 8. This result confirms the DSC instrument: 11€ for PSt segments and 1723 for
presence of a chlorine atom at thechain end of the original PMMA segments, respectivelyT; in the copolymer
PMMA that can serve as a macroinitiator. obtained through the ATRP method are little higher than
By using the clorine-terminated PMMA as the macroini- those prepared by the traditional free-radical polymeriza-
tiator for the atom transfer radical copolymerization of styr- tion; recently, this interesting phenomenon was also
ene, PMMAb-PSt block copolymer could be obtained. Fig. observed by Teyssiet al. [23]. Moreover, the block copo-
9 displays the GPC trace of the copolymer and shows nolymer composition can be calculated from the peak area of
additional peak, confirming that block copolymer has been *H NMR spectrum, as shown in Fig. 10. The molar ratio of
formed. TheT, values of the copolymer were obtained with  MMA and St units in the copolymer is 1:6. These results

Extended PMMA

Conversion > 95%
M =130,600 g/mol
M M =109

PMMA macroinitiator
M, =10,800 g/mol
M, M =131

a a
e b H3 b CH3
CHICH20 —C—CHy — ch—¢—a
0 CN =0 Jn1 ¢=o

CH3
c

OCH3
d

b

f
d,
10 ' 15 ' ZTO ' 25 ' 30
HEK meéf Elution time (min)

Fig. 8. GPC curves of PMMA before and after chain extension reaction

¥

T
L]

22 h;

Fig. 7.*"H NMR spectrum of resultant PMMA initiated with DCDPS/FgCl
PPh (1/4/12) in bulk at 78C, M, = 4,030 M,,/M,, = 1.37 (in DMSO-g,
400 MHz).

in the presence of CuCl/bipy system at 100 Conditions:t =
[MMA] = 6.25 mol I'; [PMMA], = 6.18 x 10 >mol I"%; [CuCl] =
6.25x 107> mol I%; [bipy]o = 19.8x 10> mol 12,



7352
Final PMMA-5-PSt PMMA macroinitiator
Conversion=95% M _=10,800 g/mol
M, =70,400 g/mol M M =131
M, M, =195
r T T T T 1
8 12 16 20 24 28

Elution Time (min)

Fig. 9. GPC curves of PMMA before and after copolymerization with Stin
the presence of CuCl/bipy system at 300Conditionst = 48 h, [St}, =

5.8 mol I, [PMMA], 576 X 10 *moll™% [CuCl] = 5.83 X
103 mol I™%; [bipy]o=17.4x 103 mol I %,

indicate that the DCDPS/FefIPPh initiating system
inducesliving polymerization via the reverse ATRP.

4. Conclusion

A reverse ATRP was performed with a new initiating
system, i.e. DCDPS/FeglPPhy system, for theliving/
controlled radical polymerization of methyl methacrylate
in bulk or in toluene at 7. A well-defined PMMA with
a high molecular weight (up to 49,300) and quite a narrow
polydispersity indexM,,/M, = 1.20) was obtained using

D.-Q. Qin et al. / Polymer 41 (2000) 7347-7353
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